کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1905359 1534708 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hydroimidazolone modification of human αA-crystallin: Effect on the chaperone function and protein refolding ability
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی سالمندی
پیش نمایش صفحه اول مقاله
Hydroimidazolone modification of human αA-crystallin: Effect on the chaperone function and protein refolding ability
چکیده انگلیسی

AlphaA-crystallin is a molecular chaperone; it prevents aggregation of denaturing proteins. We have previously demonstrated that upon modification by a metabolic α-dicarbonyl compound, methylglyoxal (MGO), αA-crystallin becomes a better chaperone. AlphaA-crystallin also assists in refolding of denatured proteins. Here, we have investigated the effect of mild modification of αA-crystallin by MGO (with 20–500 µM) on the chaperone function and its ability to refold denatured proteins. Under the conditions used, mildly modified protein contained mostly hydroimidazolone modifications. The modified protein exhibited an increase in chaperone function against thermal aggregation of βL- and γ-crystallins, citrate synthase (CS), malate dehydrogenase (MDH) and lactate dehydrogenase (LDH) and chemical aggregation of insulin. The ability of the protein to assist in refolding of chemically denatured βL- and γ-crystallins, MDH and LDH, and to prevent thermal inactivation of CS were unchanged after mild modification by MGO. Prior binding of catalytically inactive, thermally denatured MDH or the hydrophobic probe, 2-p-toluidonaphthalene-6-sulfonate (TNS) abolished the ability of αA-crystallin to assist in the refolding of denatured MDH. However, MGO modification of chaperone-null TNS-bound αA-crystallin resulted in partial regain of the chaperone function. Taken together, these results demonstrate that: 1) hydroimidazolone modifications are sufficient to enhance the chaperone function of αA-crystallin but such modifications do not change its ability to assist in refolding of denatured proteins, 2) the sites on the αA-crystallin responsible for the chaperone function and refolding are the same in the native αA-crystallin and 3) additional hydrophobic sites exposed upon MGO modification, which are responsible for the enhanced chaperone function, do not enhance αA-crystallin's ability to refold denatured proteins.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease - Volume 1802, Issue 4, April 2010, Pages 432–441
نویسندگان
, , , , , , ,