کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
193814 459778 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stability of iodine on ruthenium during copper electrodeposition and its effects on the nucleation behavior of electrodeposited copper
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Stability of iodine on ruthenium during copper electrodeposition and its effects on the nucleation behavior of electrodeposited copper
چکیده انگلیسی

Cyclic voltammetry, current–time-transient measurements, and X-ray photoelectron spectroscopy (XPS) have been used to study the nucleation behavior of electrochemically deposited Cu films on Ru substrates as a function of Ru pre-treatment. Pre-treatment consisted of cathodic polarization in either 1 M H2SO4 or in 1 M H2SO4 + 1 mM KI, followed by sample emersion and placement in a 1 M H2SO4 + 50 mM CuSO4 plating bath. XPS measurements confirmed the presence of adsorbed I on the Ru surface following pre-treatment in the KI/H2SO4 solution. Cyclic voltammogram (CV) data for electrodes either as-received or pre-reduced in H2SO4 and then immersed in the plating solution exhibited a broad peak in the overpotential region consistent with oxide reduction followed by Cu deposition. No underpotential deposition (UPD) feature was observed for these electrodes. In contrast, the sample pre-reduced in I-containing electrolyte exhibited a narrow Cu deposition peak in the overpotential region and a UPD Cu feature centered at 80 mV vs. Ag/AgCl. Current–time-transient (CTT) measurements of Cu deposition on as-received electrodes or electrodes pre-reduced in I-free solution exhibited potential-independent kinetics that are not well described by either progressive or instantaneous nucleation models and which at long times indicate a combination of diffusion and kinetic control. In contrast, CTT measurements of deposition kinetics for samples reduced in I-containing electrolyte exhibited complex, potential-dependent behavior and that at long times indicates diffusion control. XPS results also indicated that the iodine adlayer on Ru reduced in I-containing electrolyte is stable upon polarization to at least −200 mV vs. Ag/AgCl. These data indicate that a protective I adlayer may be deposited on an air-exposed Ru electrode as the oxide surface is electrochemically reduced, and that this layer will inhibit reformation of an oxide during the Cu electroplating process. Therefore, electrochemical pre-treatment in I-containing electrolyte may be of practical utility under industrial conditions for Cu electroplating.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electrochimica Acta - Volume 54, Issue 15, 1 June 2009, Pages 3892–3898
نویسندگان
, ,