کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1950347 1537823 2006 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Plant fatty acid (ethanol) amide hydrolases
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Plant fatty acid (ethanol) amide hydrolases
چکیده انگلیسی

Fatty acid amide hydrolase (FAAH) plays a central role in modulating endogenous N-acylethanolamine (NAE) levels in vertebrates, and, in part, constitutes an “endocannabinoid” signaling pathway that regulates diverse physiological and behavioral processes in animals. Recently, an Arabidopsis FAAH homologue was identified which catalyzed the hydrolysis of NAEs in vitro suggesting a FAAH-mediated pathway exists in plants for the metabolism of endogenous NAEs. Here, we provide evidence to support this concept by identifying candidate FAAH genes in monocots (Oryza sativa) and legumes (Medicago truncatula), which have similar, but not identical, exon–intron organizations. Corresponding M. truncatula and rice cDNAs were isolated and cloned into prokaryotic expression vectors and expressed as recombinant proteins in Escherichia coli. NAE amidohydrolase assays confirmed that these proteins indeed catalyzed the hydrolysis of 14C-labeled NAEs in vitro. Kinetic parameters and inhibition properties of the rice FAAH were similar to those of Arabidopsis and rat FAAH, but not identical. Sequence alignments and motif analysis of plant FAAH enzymes revealed a conserved domain organization for these members of the amidase superfamily. Five amino-acid residues determined to be important for catalysis by rat FAAH were absolutely conserved within the FAAH sequences of six plant species. Homology modeling of the plant FAAH proteins using the rat FAAH crystal structure as a template revealed a conserved protein core that formed the active site of each enzyme. Collectively, these results indicate that plant and mammalian FAAH proteins have similar structure/activity relationships despite limited overall sequence identity. Defining the molecular properties of NAE amidohydrolase enzymes in plants will help to better understand the metabolic regulation of NAE lipid mediators.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids - Volume 1761, Issue 3, March 2006, Pages 324–334
نویسندگان
, , , , ,