کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2130955 | 1086613 | 2011 | 8 صفحه PDF | دانلود رایگان |

Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-κB. We examined whether this process was under the control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-κB inhibitory protein IκBα and exhibited cytosolic localization of NF-κB. Under fluid shear stress, IκBα levels decreased, and concomitant nuclear localization of NF-κB was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in IκBα, and NF-κB remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X7 receptor antagonists, indicating that the P2X7 receptor is responsible for fluid shear-stress-induced IκBα degradation and nuclear accumulation of NF-κB. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced IκBα degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X7-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-κB activity through the P2Y6 and P2X7 receptor.
Journal: Experimental Cell Research - Volume 317, Issue 6, 1 April 2011, Pages 737–744