کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2404471 | 1102979 | 2012 | 7 صفحه PDF | دانلود رایگان |

To develop an effective vaccine against eastern equine encephalitis (EEE), we engineered a recombinant EEE virus (EEEV) that was attenuated and capable of replicating only in vertebrate cells, an important safety feature for live vaccines against mosquito-borne viruses. The subgenomic promoter was inactivated with 13 synonymous mutations and expression of the EEEV structural proteins was placed under the control of an internal ribosomal entry site (IRES) derived from encephalomyocarditis virus (EMCV). We tested this vaccine candidate for virulence, viremia and efficacy in the murine model. A single subcutaneous immunization with 104 infectious units protected 100% of mice against intraperitoneal challenge with a highly virulent North American EEEV strain. None of the mice developed any signs of disease or viremia after immunization or following challenge. Our findings suggest that the IRES-based attenuation approach can be used to develop a safe and effective vaccine against EEE and other alphaviral diseases.
► Design of a recombinant EEE virus (EEEV/IRES), as a candidate vaccine for EEEV.
► Subgenomic promoter of wild type EEEV inactivated by IRES-based attenuation approach.
► Virulence, viremia and efficacy of EEEV/IRES tested in murine model.
► EEEV/IRES incapable of infecting mosquitoes.
Journal: Vaccine - Volume 30, Issue 7, 8 February 2012, Pages 1276–1282