کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
240724 1427929 2007 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the formation and decomposition of C7H8
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
On the formation and decomposition of C7H8
چکیده انگلیسی

The kinetics of reactions on the C7H8 surface were studied with state-of-the-art ab initio transition state theory (TST) and master equation methodologies. A priori predictions of the capture rate for C6H5 + CH3 and for C7H7 + H are obtained from direct variable reaction coordinate TST simulations. These simulations employ small basis set CASPT2 interaction energies coupled with one-dimensional reaction path corrections based on higher level simulations for related reactions. For the C7H7 + H reaction, predictions are obtained for both the total rate and for the branching between toluene, o-isotoluene and p-isotoluene. A mapping of the low energy pathways for isomerization from these three C7H8 isomers identifies a number of processes with barriers at or below the dissociation threshold. Nevertheless, at combustion temperatures the dissociation rates are predicted to exceed the isomerization rates, and it is reasonable to treat the kinetics of each isomer as a simple single well association/dissociation equilibrium. Master equation simulations yield predictions for the temperature and pressure dependence of each of the recombination and dissociation processes, as well as for the C7H7 + H → C6H5 + CH3 bimolecular reaction. These simulations implement collisional energy transfer probabilities based on the work of Luther and co-workers. The theoretical predictions are found to be in satisfactory agreement with the available experimental data for the photodissociation of toluene, the temperature and pressure dependent dissociation of toluene, and the reaction of benzyl radical with H. For the C6H5 + CH3 recombination, the theoretical predictions exceed the experimental measurements of Lin and coworkers by a factor of 2 or more for all temperatures.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Proceedings of the Combustion Institute - Volume 31, Issue 1, January 2007, Pages 221–229
نویسندگان
, , ,