کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2409774 | 1103230 | 2006 | 8 صفحه PDF | دانلود رایگان |

Photopolymerized poly(ethylene glycol) (PEG)-crosslinked hydrogels were assessed for their ability to serve as a payload vehicle to deliver a viable bacterial vaccine (Brucella abortus strain RB51 (RB51) to bison in Yellowstone National Park) ballistically using thermoplastic degradable Biobullets. PEG modified with degradable glycolide or lactide oligomers capped with photopolymerizable methacrylate groups served to crosslink the hydrogel vaccine carrier inside commercial hydroxypropylcellulose Biobullets. Release of 1 μm diameter model fluorescent particles from hydrogels followed known degradation trends for glycolide- and lactide-modified PEG hydrogels. All particles were released from PEG-co-glycolide hydrogels after ∼10 days and PEG-co-lactide hydrogels after ∼45 days following gel degradation. Minimal particle release was observed from pure PEG dimethacrylate hydrogels over 40 days. P. aeruginosa (strain PAO1) and RB51 live vaccines exhibit excellent viability following exposure to photopolymerization encapsulation within these gel matrices. Hydrogels photopolymerized into the payload chamber of Biobullets exhibit similar ballistic properties to commercially available Biobullets and penetrate and remain intact when fired intramuscularly into live elk for release of their gel payload in the host.
Journal: Vaccine - Volume 24, Issue 9, 27 February 2006, Pages 1462–1469