کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2486935 1114398 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Measurement and Decomposition Kinetics of Residual Hydrogen Peroxide in the Presence of Commonly used Excipients and Preservatives
موضوعات مرتبط
علوم پزشکی و سلامت داروسازی، سم شناسی و علوم دارویی اکتشاف دارویی
پیش نمایش صفحه اول مقاله
Measurement and Decomposition Kinetics of Residual Hydrogen Peroxide in the Presence of Commonly used Excipients and Preservatives
چکیده انگلیسی
Quantitation of residual hydrogen peroxide (H2O2) and evaluation of the impact on product stability is necessary as unwanted H2O2 can potentially be introduced during the manufacturing of pharmaceuticals, biologics, and vaccines. A sensitive and convenient microplate-based method with fluorescence detection for H2O2 quantitation was recently reported (Towne et al., 2004, Anal Biochem 334: 290-296). This method was found to be highly robust and reproducible, with a level of detection of 0.015 ppm and a level of quantitation of 0.025 ppm (in water). The relatively small sample requirements and amenability for automation make this assay an attractive tool for detecting residual H2O2 levels. Without additional manipulation, the assay can be conducted on heterogeneous solutions with significant degree of turbidity, such as the presence of suspensions or aluminum-containing adjuvants. The quantitation of H2O2 and its decomposition kinetics was also studied in presence of two common vaccine preservatives (thimerosal and phenol) and eight commonly used excipients (polyols). Over time, there is a distinct, temperature dependent decrease in H2O2 recovered in thimerosal and phenol containing samples versus non-preservative containing controls. Based on the half-life of spiked H2O2, the decay rates in eight polyols tested were found to be: ribose > sucrose > (glycerol, glucose, lactose, mannitol, sorbitol, and xylose). © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3987-3996, 2009
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pharmaceutical Sciences - Volume 98, Issue 11, November 2009, Pages 3987-3996
نویسندگان
, , , , , , , , ,