کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2503177 1557422 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Development of machine learning models of β-cyclodextrin and sulfobutylether-β-cyclodextrin complexation free energies
موضوعات مرتبط
علوم پزشکی و سلامت داروسازی، سم شناسی و علوم دارویی علوم دارویی
پیش نمایش صفحه اول مقاله
Development of machine learning models of β-cyclodextrin and sulfobutylether-β-cyclodextrin complexation free energies
چکیده انگلیسی

A new set of 142 experimentally determined complexation constants between sulfobutylether-β-cyclodextrin and diverse organic guest molecules, and 78 observations reported in literature, were used for the development of the QSPR models by the two machine learning regression methods – Cubist and Random Forest. Similar models were built for β-cyclodextrin using the 233-compound dataset available in the literature. These results demonstrate that the machine learning regression methods can successfully describe the complex formation between organic molecules and β-cyclodextrin or sulfobutylether-β-cyclodextrin. In particular, the root mean square errors for the test sets predictions by the best models are low, 1.9 and 2.7 kJ/mol, respectively. The developed QSPR models can be used to predict the solubilizing effect of cyclodextrins and to help prioritizing experimental work in drug discovery.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Pharmaceutics - Volume 418, Issue 2, 14 October 2011, Pages 207–216
نویسندگان
, , , , ,