کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2504345 | 1557458 | 2010 | 7 صفحه PDF | دانلود رایگان |

“Smart” (thermosensitive) alginate–hydroxypropylcellulose (Alg/HPC) microbeads for controlled release of heparin were synthesized and the release profiles at various temperatures and for various alginate/HPC compositions were measured. Microbeads of regular spherical shape (ca. 3 μm in diameter) containing efficiently encapsulated heparin were obtained using an emulsification method. The internal structure of the bead was estimated by fluorescence microscopy using dansyl alginate as a labelled component. The microbeads surface structure and morphology were imaged in a dry state using scanning electron microscopy (SEM) and in water using atomic force microscopy (AFM). The microbead surface was shown to be covered by the regular network of pores with a mesh of ca. 30–60 nm. Lower critical solution temperature (LCST) of the Alg/HPC systems was measured spectrophotometrically (cloud point measurements). Heparin release profiles were obtained based on spectrophotometric detection of heparin complex with Azure A. Three-stage sustained release for at least 16 days was observed at 37 °C. This was correlated with the size of the pores present at the surface of microbeads. The release profile can be controlled by the temperature and composition of the Alg/HPC microbeads.
Journal: International Journal of Pharmaceutics - Volume 385, Issues 1–2, 29 January 2010, Pages 163–169