کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2562296 1127093 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Propranolol adrenergic blockade inhibits human brain endothelial cells tubulogenesis and matrix metalloproteinase-9 secretion
موضوعات مرتبط
علوم پزشکی و سلامت داروسازی، سم شناسی و علوم دارویی داروشناسی
پیش نمایش صفحه اول مقاله
Propranolol adrenergic blockade inhibits human brain endothelial cells tubulogenesis and matrix metalloproteinase-9 secretion
چکیده انگلیسی

In recent clinical observation, the growth of endothelial tumors, such as hemangiomas of infancy, was repressed by the non-selective β-adrenergic antagonist propranolol possibly through targeting of the vascular endothelial compartment. As human brain microvascular endothelial cells (HBMEC) play an essential role as structural and functional components in tumor angiogenesis, we assessed whether propranolol could target HBMEC's in vitro angiogenic properties. We found that biopsies from human glioblastoma as well as from experimental brain tumor-associated vasculature expressed high levels of the β2-adrenergic receptor, suggesting adrenergic adaptative processes could take place during tumor vascularization. We observed that in vitro tubulogenesis was significantly reduced by propranolol when HBMEC were seeded on Matrigel. Propranolol, as much as 100 μM, did not reduce cell viability and did not alter HBMEC migration as assessed with Boyden chambers. Secretion of the key angiogenic and extracellular matrix degrading enzymes MMP-2 and MMP-9 was assessed by zymography. Propranolol significantly reduced MMP-9 secretion upon treatment with the tumor-promoting agent phorbol 12-myristate 13-acetate, while secretion of MMP-2 remained unaffected. This was correlated with a decrease in MMP-9 gene expression which is, in part, explained by a decrease in the nucleocytoplasmic export of the mRNA stabilizing factor HuR. Our data are therefore indicative of a selective role for propranolol in inhibiting MMP-9 secretion and HBMEC tubulogenesis which could potentially add to propranolol's anti-angiogenic properties.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pharmacological Research - Volume 60, Issue 5, November 2009, Pages 438–445
نویسندگان
, , , , ,