کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2580543 1561633 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generation of insulin-producing cells from rat mesenchymal stem cells using an aminopyrrole derivative XW4.4
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست بهداشت، سم شناسی و جهش زایی
پیش نمایش صفحه اول مقاله
Generation of insulin-producing cells from rat mesenchymal stem cells using an aminopyrrole derivative XW4.4
چکیده انگلیسی


• Compound XW4.4 can differentiate rat mesenchymal stem cells toward insulin-producing cells in vitro.
• Differentiated cells had characteristics of insulin-producing cells.
• HNF 3β may be involved in pancreatic differentiation of rMSCs in pancreatic differentiation of rat mesenchymal stem cells.

Type 1 diabetes mellitus (T1DM), a multisystem disease with both biochemical and anatomical/structural consequences, is a major health concern worldwide. Pancreatic islet transplantation provides a promising treatment for T1DM. However, the limited availability of islet tissue or new sources of insulin producing cells (IPCs) that are responsive to glucose hinder this promising approach. Though slow, the development of pancreatic beta-cell lines from rodent or human origin has been steadily progressing. Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent, culture-expanded, non-hematopoietic cells that are currently being investigated as a novel cellular therapy. The in vitro differentiation potential of IPCs has raised hopes for a treatment of clinical diseases associated with autoimmunity.We screened for small molecules that induce pancreatic differentiation of IPCs. There are some compounds which showed positive effects on the DTZ staining. The aminopyrrole derivative compound XW4.4 which shows the best activity among them was found to induce pancreatic differentiation of rat MSCs (rMSCs). The in vitro studies indicated that treatment of rMSCs with compound XW4.4 resulted in differentiated cells with characteristics of IPCs including islet-like clusters, spherical, grape-like morphology, insulin secretion, positive for dithizone, glucose stimulation and expression of pancreatic endocrine cell marker genes. The data has also suggested that hepatocyte nuclear factor 3β (HNF 3β) may be involved in pancreatic differentiation of rMSCs when treated with XW4.4. Results indicate that XW4.4 induced rMSCs support the efforts to derive functional IPCs and serve as a means to alleviate limitations surrounding islet cell transplantation in the treatment of T1DM.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemico-Biological Interactions - Volume 208, 5 February 2014, Pages 1–7
نویسندگان
, , , , , , ,