کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2602688 | 1133794 | 2011 | 8 صفحه PDF | دانلود رایگان |

Cell transformation assays (CTAs) are currently regarded as the only possible in vitro alternative to animal testing for carcinogenesis studies. CTAs have been proposed as screening tests for the carcinogenic potential of compounds that have no evidence of genotoxicity but present structural alerts for carcinogenicity. We have extensively used the BALB/c 3T3 model based on the A31 cell clone to test single chemicals, complex mixtures and environmental pollutants. In the prevalidation study carried out by ECVAM, the improved protocol is based on BALB/c 3T3 A31-1-1 cells, a clone derived by A31 cells, that is very sensitive to PAH-induced transformation. The present study was performed in the aim to compare the results obtained with the two different clones exposed to different classes of carcinogens. Cells were treated with PAHs (3-methylcholanthrene, benzo(a)pyrene), alkylating agents (melphalan) and aloethanes (1,2-dibromoethane). The induction of cytotoxicity and the onset of chemically transformed foci were evaluated by two experimental protocols, differing for cell seeding density and chemical treatment duration. The A31-1-1 cells showed higher inherent transformation rate after PAHs treatment, but they were insensitive to 1,2-dibromoethane at concentrations that usually induced transformation in A31 cells. As 1,2-dibromoethane is bioactivated to reactive forms able to bind DNA mainly through the conjugation with intracellular glutathione, these results suggested a reduced activity of phase-2 enzymes involved in glutathione conjugation in A31-1-1 cells. Our results give evidence that inherent metabolic capacity of cells may play a critical role in in vitro cell transformation, cautioning against possible misclassification of chemicals.
► Two BALB/c 3T3 clones were compared for response to carcinogens in the in vitro transformation assay.
► Two experimental protocols were used, differing in cell number at seeding and treatment duration.
► The polycyclic aromatic hydrocarbons B(a)P and 3-MCA were very toxic and induced high transformation rates in A31-1-1 cells.
► A 31-1-1 cells were insensitive to 1,2-DBE, which is mainly bioactivated by GSH conjugation.
► The different sensitivity of BALB/c 3T3 clones to chemicals affected the final outcome.
Journal: Toxicology in Vitro - Volume 25, Issue 6, September 2011, Pages 1183–1190