کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3057187 1186591 2007 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Acetylcholine release from fetal tissue homotopically grafted to the motoneuron-depleted lumbar spinal cord. An in vivo microdialysis study in the awake rat
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی عصب شناسی
پیش نمایش صفحه اول مقاله
Acetylcholine release from fetal tissue homotopically grafted to the motoneuron-depleted lumbar spinal cord. An in vivo microdialysis study in the awake rat
چکیده انگلیسی

Grafts of spinal cord (SC) tissue can survive and develop into the severed SC, but no conclusive data are available concerning the functional activity of transplanted neurons. In the present study, suspensions of prelabeled embryonic ventral SC tissue were grafted to the lumbar SC of rats with motoneuron loss induced by perinatal injection of volkensin. Eight to ten months post-grafting, acetylcholine (ACh) release was measured by microdialysis in awake rats, under either basal or stimulated conditions. In normal animals, baseline ACh output averaged 1.6 pmol/30 μl, it exhibited a 4-fold increase after KCl-induced depolarization or handling, and it was completely inhibited by tetrodotoxin administration. Moreover, ACh levels did not change following acute SC transection performed under anesthesia during ongoing dialysis, suggesting an intrinsic source for spinal ACh.Treatment with volkensin produced a severe (> 85%) motoneuronal loss accompanied by a similar reduction in baseline ACh release and almost completely abolished effects of depolarization or handling. In transplanted animals, many motoneuron-like labeled cells were found within and just outside the graft area, but apparently in no case were they able to extend fibers towards the denervated muscle. However, the grafts restored baseline ACh output up to near-normal levels and responded with significantly increased release to depolarization, but not to handling.The present findings indicate that spinal neuroblasts can survive and develop within the motoneuron-depleted SC and release ACh in a near-normal, but apparently non-regulated, manner. This may be of importance for future studies involving intraspinal stem cell grafts.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Experimental Neurology - Volume 204, Issue 1, March 2007, Pages 326–338
نویسندگان
, , , , , ,