کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
3391388 | 1221041 | 2014 | 5 صفحه PDF | دانلود رایگان |
• The peripheral and central immune systems interact to regulate brain function.
• In reply, the brain has feedback mechanisms that control the immune response.
• The immune–brain loop assures a proper physiological response to assure survival.
Twenty-five years ago, immunologists and neuroscientists had little science of mutual interest. This is no longer the case. Neuroscientists now know that the first formally defined cytokine, IL-1, activates a discrete population of hypothalamic neurons. This interaction leads to the release of glucocorticoids from the adrenal gland, a hormone that has a long history in immunoregulation. Immunologists have been surprised to learn that lymphoid cells synthesize acetylcholine, the first formally recognized neurotransmitter. This neurotransmitter suppresses the synthesis of TNF. These discoveries blur the distinction of neuroscience and immunology as distinct disciplines. There are now 37 formally recognized cytokines and their receptors, and at least 60 classical neurotransmitters plus over 50 neuroactive peptides. These findings explain why both immunologists and neuroscientists are getting nervous about immunity and highlight a real need to apply integrative physiological approaches in biomedical research.
Journal: Seminars in Immunology - Volume 26, Issue 5, October 2014, Pages 389–393