کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3421875 1226693 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Understanding carbon catabolite repression in Escherichia coli using quantitative models
ترجمه فارسی عنوان
درک سرکوب کاتابولیت کربن در اشرشیاکلی با استفاده از مدل های کمی
موضوعات مرتبط
علوم زیستی و بیوفناوری ایمنی شناسی و میکروب شناسی میکروب شناسی
چکیده انگلیسی


• Carbon catabolite repression (CCR) has motivated important modeling efforts.
• A simplified representation of diauxic growth is useful for comparing existing models.
• Different models, based on different hypotheses, can quantitatively account for CCR.
• Mechanistic models of CCR could be improved by integrating global cell physiology.

Carbon catabolite repression (CCR) controls the order in which different carbon sources are metabolized. Although this system is one of the paradigms of the regulation of gene expression in bacteria, the underlying mechanisms remain controversial. CCR involves the coordination of different subsystems of the cell that are responsible for the uptake of carbon sources, their breakdown for the production of energy and precursors, and the conversion of the latter to biomass. The complexity of this integrated system, with regulatory mechanisms cutting across metabolism, gene expression, and signaling, and that are subject to global physical and physiological constraints, has motivated important modeling efforts over the past four decades, especially in the enterobacterium Escherichia coli. Different hypotheses concerning the dynamic functioning of the system have been explored by a variety of modeling approaches. We review these studies and summarize their contributions to the quantitative understanding of CCR, focusing on diauxic growth in E. coli. Moreover, we propose a highly simplified representation of diauxic growth that makes it possible to bring out the salient features of the models proposed in the literature and confront and compare the explanations they provide.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: - Volume 23, Issue 2, February 2015, Pages 99–109
نویسندگان
, , , ,