کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
391794 662001 2014 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Genetic interval neural networks for granular data regression
ترجمه فارسی عنوان
شبکه های عصبی بازه ژنتیکی برای رگرسیون داده های دانه ای
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Granular data and granular models offer an interesting tool for representing data in problems involving uncertainty, inaccuracy, variability and subjectivity have to be taken into account. In this paper, we deal with a particular type of information granules, namely interval-valued data. We propose a multilayer perceptron (MLP) to model interval-valued input–output mappings. The proposed MLP comes with interval-valued weights and biases, and is trained using a genetic algorithm designed to fit data with different levels of granularity. In the evolutionary optimization, two implementations of the objective function, based on a numeric-valued and an interval-valued network error, respectively, are discussed and compared. The modeling capabilities of the proposed MLP are illustrated by means of its application to both synthetic and real world datasets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 257, 1 February 2014, Pages 313–330
نویسندگان
, , , ,