کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4408089 1618829 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Designer, acidic biochar influences calcareous soil characteristics
ترجمه فارسی عنوان
طراح، زیست سنجی اسیدی بر خصوصیات آهکی خاک تاثیر می گذارد
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
چکیده انگلیسی

In a proof-of-concept study, an acidic (pH 5.8) biochar was created using a low pyrolysis temperature (350 °C) and steam activation (800 °C) to potentially improve the soil physicochemical status of an eroded calcareous soil. Biochar was added at 0%, 1%, 2%, and 10% (by wt.) and soils were destructively sampled at 1, 2, 3, 4, 5, and 6 month intervals. Soil was analyzed for gravimetric water content, pH, NO3–N, plant-available Fe, Zn, Mn, Cu, and P, organic C, CO2 respiration, and microbial enumeration via extractable DNA and 16S rRNA gene copies. Gravimetric soil water content increased with biochar application regardless of rate, as compared to the control. Soil pH decreased between 0.2 and 0.4 units, while plant-available Zn, Mn, and P increased with increasing biochar application rate. Micronutrient availability decreased over time likely due to insoluble mineral species precipitation. Increasing biochar application raised the soil organic C content and remained elevated over time. Increasing biochar application rate also increased respired CO2, yet the CO2 released decreased over time. Soil NO3–N concentrations significantly decreased with increasing biochar application rate likely due to microbial immobilization or denitrification. Depending on application rate, biochar produced a 1.4 to 2.1-fold increase in soil DNA extracted and 1.4- to 2.4-fold increase in 16S rRNA gene abundance over control soils, suggesting microbial stimulation and a subsequent burst of activity upon biochar addition. Our results showed that there is promise in designing a biochar to improve the quality and water relations of eroded calcareous soils.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemosphere - Volume 142, January 2016, Pages 184–191
نویسندگان
, , , , ,