کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4460877 1621341 2007 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient multiresolution spatial predictions for large data arrays
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات کامپیوتر در علوم زمین
پیش نمایش صفحه اول مقاله
Efficient multiresolution spatial predictions for large data arrays
چکیده انگلیسی

Imputations of missing values and optimal smoothing with massive data arrays poses a computational challenge since ordinary kriging becomes infeasible. Imputation and smoothing with standard algorithms like inverse distance weighted nearest neighbour interpolation (IDW) and interpolation on triangulated irregular networks (TIN/IP) fail to incorporate the spatial structure and ignore information beyond the neighbourhood. Multiresolution spatial models (MRSM) or approximate kriging methods adapted to handling massive data sets can be expected to do better than IDW and TIN/IP in terms of mean square errors of prediction (MSEP). We illustrate a MRSM that is efficient, computationally fast, and easy to implement. In two forestry examples with imputation of LiDAR range values the MRSM achieved a lower MSEP than IDW, TIN/IP, and fixed ranked kriging. MRSM appear as especially attractive for the construction of a DTM from last return LiDAR pulses. A third example demonstrates MRSM for efficient smoothing.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Remote Sensing of Environment - Volume 109, Issue 4, 30 August 2007, Pages 451–463
نویسندگان
, , ,