کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4481036 1623079 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Response of a continuous anaerobic digester to temperature transitions: A critical range for restructuring the microbial community structure and function
ترجمه فارسی عنوان
پاسخ یک واگن بی هوازی بی هوازی به تغییرات دما: محدوده بحرانی برای بازسازی ساختار و عملکرد جامعه میکروبی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی


• The effect of stepwise temperature shifts was studied in a continuous anaerobic reactor.
• A serious process deterioration was observed with a temperature shift from 45 °C to 50 °C.
• This perturbation was associated with a severe restructuring of the microbial community.
• This temperature range was likely critical for the transition of the methanogenic activity.
• The highest methane production rate and yield were found at an intermediate temperature of 45 °C.

Temperature is a crucial factor that significantly influences the microbial activity and so the methanation performance of an anaerobic digestion (AD) process. Therefore, how to control the operating temperature for optimal activity of the microbes involved is a key to stable AD. This study examined the response of a continuous anaerobic reactor to a series of temperature shifts over a wide range of 35–65 °C using a dairy-processing byproduct as model wastewater. During the long-term experiment for approximately 16 months, the reactor was subjected to stepwise temperature increases by 5 °C at a fixed HRT of 15 days. The reactor showed stable performance within the temperature range of 35–45 °C, with the methane production rate and yield being maximum at 45 °C (18% and 26% greater, respectively, than at 35 °C). However, the subsequent increase to 50 °C induced a sudden performance deterioration with a complete cessation of methane recovery, indicating that the temperature range between 45 °C and 50 °C had a critical impact on the transition of the reactor's methanogenic activity from mesophilic to thermophilic. This serious process perturbation was associated with a severe restructuring of the reactor microbial community structure, particularly of methanogens, quantitatively as well as qualitatively. Once restored by interrupted feeding for about two months, the reactor maintained fairly stable performance under thermophilic conditions until it was upset again at 65 °C. Interestingly, in contrast to most previous reports, hydrogenotrophs largely dominated the methanogen community at mesophilic temperatures while acetotrophs emerged as a major group at thermophilic temperature. This implies that the primary methanogenesis route of the reactor shifted from hydrogen- to acetate-utilizing pathways with the temperature shifts from mesophilic to thermophilic temperatures. Our observations suggest that a mesophilic digester may not need to be cooled at up to 45 °C in case of undesired temperature rise, for example, by excessive self-heating, which offers a possibility to reduce operating costs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Water Research - Volume 89, 1 February 2016, Pages 241–251
نویسندگان
, ,