کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4482691 1316866 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-linear effects on solute transfer between flowing water and a sediment bed
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Non-linear effects on solute transfer between flowing water and a sediment bed
چکیده انگلیسی

A previously developed model of periodic pore water flow in space and time, and associated solute transport in a stream bed of fine sand is extended to coarse sand and fine gravel. The pore water flow immediately below the sediment/water interface becomes intermittently a non-Darcy flow. The periodic pressure and velocity fluctuations considered are induced by near-bed coherent turbulent motions in the stream flow; they penetrate from the sediment/water interface into the sediment pore system and are described by a wave number (χ) and a period (T) that are given as functions of the shear velocity (U∗) between the flowing water and the sediment bed. The stream bed has a flat surface without bed forms. The flow field in the sediment pore system is described by the continuity equation and a resistance law that includes both viscous (Darcy) and non-linear (inertial) effects. Simulation results show that non-linear (inertial) effects near the sediment/water interface increase flow resistance and reduce mean flow velocities. Compared to pure Darcy flow, non-linear (inertial) effects reduce solute exchange rates between overlying water and the sediment bed but only by a moderate amount (less than 50%). Turbulent coherent flow structures in the stream flow enhance solute transfer in the pore system of a stream bed compared to pure molecular diffusion, but by much less than standing surface waves or bed forms.

Figure optionsDownload high-quality image (195 K)Download as PowerPoint slideHighlights
► A quantitative relationship of the solute transfer at a stream sediment surface is given.
► Inertial effects on the pore water flow are accounted for.
► Turbulence penetration into a coarse sand or fine gravel bed is estimated.
► Applications are in models of chemical transformations or microbial growth.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Water Research - Volume 45, Issue 18, 15 November 2011, Pages 6074–6086
نویسندگان
, ,