کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4483688 1316897 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: Reaction kinetics, product and pathway evaluation
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: Reaction kinetics, product and pathway evaluation
چکیده انگلیسی

Fluoroquinolones (FQs) are a group of widely prescribed antibiotics and have been frequently detected in the aquatic environment. The reaction kinetics and transformation of seven FQs (ciprofloxacin (CIP), enrofloxacin (ENR), norfloxacin (NOR), ofloxacin (OFL), lomefloxacin (LOM), pipemidic acid (PIP) and flumequine (FLU)) and three structurally related amines (1-phenylpiperazine (PP), N-phenylmorpholine (PM) and 4-phenylpiperidine (PD)) toward chlorine dioxide (ClO2) were investigated to elucidate the behavior of FQs during ClO2 disinfection processes. The reaction kinetics are highly pH-dependent, can be well described by a second-order kinetic model incorporating speciation of FQs, and follow the trend of OFL > ENR > CIP ∼ NOR ∼ LOM > > PIP in reactivity. Comparison among FQs and related amines and product characterization indicate that FQs’ piperazine ring is the primary reactive center toward ClO2. ClO2 likely attacks FQ’s piperazinyl N4 atom followed by concerted fragmentation involving piperazinyl N1 atom, leading to dealkylation, hydroxylation and intramolecular ring closure at the piperazine moiety. While FQs with tertiary N4 react faster with ClO2 than FQs with secondary N4, the overall reactivity of the piperazine moiety also depends strongly on the quinolone ring through electronic effects. The reaction rate constants obtained in clean water matrix can be used to model the decay of CIP by ClO2 in surface water samples, but overestimate the decay in wastewater samples. Overall, transformation of FQs, particularly for those with tertiary N4 amines, could be expected under typical ClO2 disinfection conditions. However, the transformation may not eliminate antibacterial activity because of little destruction at the quinolone ring.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Water Research - Volume 44, Issue 20, December 2010, Pages 5989–5998
نویسندگان
, , ,