کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4500366 1319985 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classification and stability of global inhomogeneous solutions of a macroscopic model of cell motion
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله
Classification and stability of global inhomogeneous solutions of a macroscopic model of cell motion
چکیده انگلیسی

Many micro-organisms use chemotaxis for aggregation, resulting in stable patterns. In this paper, the amoeba Dictyostelium discoideum serves as a model organism for understanding the conditions for aggregation and classification of resulting patterns. To accomplish this, a 1D nonlinear diffusion equation with chemotaxis that models amoeba behavior is analyzed. A classification of the steady state solutions is presented, and a Lyapunov functional is used to determine conditions for stability of inhomogenous solutions. Changing the chemical sensitivity, production rate of the chemical attractant, or domain length can cause the system to transition from having an asymptotic steady state, to having asymptotically stable single-step solution and multi-stepped stable plateau solutions.


► Nonlinear stability analysis of a chemotaxis model of amoeba behavior derived from stochastic system with finite volume cells is performed.
► Hamiltonian framework and plateau analysis describe stationary solutions.
► Lyapunov functional used to determine asymptotic convergence.
► Conditions for stable multi-stepped mound shaped patterns are given.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematical Biosciences - Volume 238, Issue 1, July 2012, Pages 21–31
نویسندگان
, , ,