کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4540474 | 1326671 | 2011 | 8 صفحه PDF | دانلود رایگان |

The food web structure of two sandy beach ecosystems with contrasting morphodynamics (dissipative vs. reflective) was examined using stable carbon (δ13C) and nitrogen (δ15N) isotope analysis. Organic matter sources (POM: particulate organic matter; SOM: sediment organic matter) and consumers (zooplankton, benthic invertebrates and fishes) were sampled seasonally in both sandy beaches. Food webs significantly differed between beaches: even though both webs were mainly supported by POM, depleted δ13C and δ15N values for food sources and consumers were found in the dissipative system (following the reverse pattern in δ13C values for consumers) for all the four seasons. Primary consumers (zooplankton and benthic invertebrates) use different organic matter sources on each beach and these differences are propagated up in the food web. The higher productivity found in the dissipative beach provided a significant amount of food for primary consumers, notably suspension feeders. Thus, the dissipative beach supported a more complex food web with more trophic links and a higher number of prey and top predators than the reflective beach. Morphodynamic factors could explain the contrasting differences in food web structure. The high degree of retention (nutrients and phytoplankton) recorded for the surf zone of the dissipative beach would result in the renewed accumulation of POM that sustains a more diverse and richer fauna than the reflective beach. Further studies directed to assess connections between the macroscopic food web, the surf-zone microbial loop and the interstitial compartment will provide a deeper understanding on the functioning of sandy beach ecosystems.
Research highlights
► Food web structure of dissipative and reflective beaches was mainly supported by particulate organic matter.
► Food webs significantly differed between beaches, showing distinct δ13C and δ15N values.
► Primary consumers use different organic matter sources on each beach and these differences are propagated up in the food web.
► Differences in hydrodynamic regimes and productivity could explain the disparity between food webs.
Journal: Estuarine, Coastal and Shelf Science - Volume 91, Issue 4, 1 March 2011, Pages 536–543