کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4554535 | 1628088 | 2013 | 8 صفحه PDF | دانلود رایگان |

Brachiaria are increasingly cropped in the tropics because these species combine good fodder quality and yield with high resistance to aluminum (Al) toxicity, an important stress factor in acidic soils. The mechanisms for the extraordinarily high resistance to Al toxicity in Brachiaria decumbens remain unclear. It has been suggested that the presence of a multiseriate exodermis might contribute to efficient Al exclusion in B. decumbens. However, no data concerning the root structure of less Al-resistant Brachiaria species have been reported. The aim of the present study was determine whether the exodermis is a distinctive feature of Al hyper-resistant B. decumbens compared with Brachiaria species with lower Al resistance. B. decumbens, B. brizantha, and B. ruziziensis were grown in nutrient solution without (control) or with 200 μM Al (32 μM Al3+ activity) for 96 h. Differences in the Al resistance were assessed using various indicators: Al-induced inhibition of root elongation, membrane damage, and the maintenance of nutrient homeostasis. Transversal root sections were examined using fluorescence microscopy to reveal the presence of an exodermis through auto-fluorescence. Aluminum resistance decreased in the order B. decumbens > B. brizantha > B. ruziziensis. Both the hyper-resistant B. decumbens and the moderately resistant B. brizantha were more efficient in Al-exclusion than the sensitive B. ruziziensis. Apoplastic barriers, in the form of a multiseriate exodermis, were constitutively present in B. decumbens, but not in Al-sensitive B. ruziziensis. Under control conditions, B. brizantha exhibited slightly auto-fluorescent epidermal cell walls, while under Al exposure auto-fluorescent deposits were observed in the intercellular spaces between the epidermal and sub-epidermal cell layers. The results provide circumstantial evidence of a role for apoplastic barriers in the Al resistance of B. decumbens and, to a lesser extent, in B. brizantha. Nonetheless, additional research is required to determine a causal relationship between the exodermal barrier and Al resistance.
► Brachiaria is widely used as fodder grass in the tropics.
► Brachiaria species differ in resistance to aluminum toxicity.
► Differences in the efficiency to exclude Al from the root system are responsible.
► Best exclusion is achieved by roots of Al-hyperresistant Brachiaria decumbens.
► A multiseriate exodermis is a distinctive feature of this species.
Journal: Environmental and Experimental Botany - Volume 89, May 2013, Pages 11–18