کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4555365 | 1329254 | 2009 | 8 صفحه PDF | دانلود رایگان |

Potted one-year-old plants of Thymus vulgaris L. (thyme, Lamiaceae, C3 metabolism), were grown for three months (10 June–10 September, 2004) in a “mini-free-air-CO2-enrichment” (“mini-FACE”) system, under 500 μmol mol−1 and ambient concentrations of atmospheric carbon dioxide (CO2). Compared to ambient CO2, elevated CO2 stimulated leaf superoxide dismutase (SOD, EC 1.15.1.1) activity only at the first sampling-time (July), followed by no variation or even a trend of decreased activity on the other two sampling-times (August and September). Under high CO2, guaiacol peroxidase (GPX, EC 1.11.1.7) and catalase (CAT, EC 1.11.1.6) leaf activities showed no variation or drop throughout the duration of the experiment. By contrast, under elevated CO2, leaf glutathione reductase (GR, EC 1.6.4.2) activity increased on all the sampling-times, and also a duration-dependent upward trend of glutathione (GSH) content was recorded, with this increase becoming significant – compared with ambient CO2 – at the third sampling-time (September). Simultaneously, leaves from plants grown under high CO2 showed a marked increase in essential oil yield, with slight increments in phenolic component and decrements in mono- and sesquiterpene components. Also, a drop in thiobarbituric acid reactive substances (TBARS) content under elevated CO2 was displayed. Thus, in general, the results reported here point to a downregulation of leaf antioxidant enzymes under elevated CO2, supporting the notion of reduced reactive oxygen species (ROS) formation under these circumstances. Relying instead on antioxidant-regenerating enzymes, namely GR, fairly high GSH content and essential oils, might be a ‘low cost’ life strategy for growth under elevated CO2, not requiring synthesis/activation of energy-intensive and expensive metabolic processes.
Journal: Environmental and Experimental Botany - Volume 65, Issue 1, January 2009, Pages 99–106