کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4573470 1629483 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland
چکیده انگلیسی


• We used a 6-year warming (W) and increased precipitation (P) experiment.
• P increased MBC, MBN, EON and microbial quotient at the 0–10 cm depth.
• W increased metabolic diversity (H) and evenness (E) at the 10–20 cm depth.
• Increased precipitation significantly increased H and E at two depths.
• Microbial physiology exerted more influence on driving metabolic profiles.

Few studies have examined the long-term responses of soil labile organic carbon (C) and nitrogen (N) and microbial activities to climate change in semiarid and arid regions. Here we investigated soil extractable organic carbon (EOC) and nitrogen (EON), microbial biomass and microbial metabolic activities at two depths of 0–10 and 10–20 cm in response to single and combined effects of warming and increased precipitation in a semiarid grassland of northern China since April 2005. Soil EOC and EON pools were measured using KCl and hot water extractions, and microbial metabolic activities were measured using MicroResp. Results showed that warming had no effects on EOC, EON and microbial biomass C (MBC) and N (MBN) in the two extracts as well as the ratio of MBC to MBN at the two depths, but increased precipitation significantly increased MBC, MBN, EON and microbial quotient at the 0–10 cm depth. Warming significantly decreased microbial metabolic activities at both soil depths, but significantly increased microbial metabolic diversity (H) and evenness (E) at the 10–20 cm depth. Increased precipitation significantly decreased microbial metabolic activities, but significantly increased H and E at the two depths. Warming and increased precipitation significantly interacted to affect microbial metabolic activities at the two depths as well as H and E at the 10–20 cm depth. Redundancy analysis determined that microbial quotient, i.e., the ratio of MBC to total C, pH and NH4+–N greatly accounted for the variances in the soil microbial metabolic profiles, but the ratio of EOC to EON, moisture and microbial quotient largely accounted for the variances in the soil microbial metabolic profiles specifically at the 10–20 cm depth, implying that microbial physiology such as microbial quotient rather than the amounts of labile organic C and N pools exerted more influence on driving the patterns of microbial metabolic profiles. Our results indicated that soil EOC and EON, microbial biomass and microbial metabolic activities at the two depths differentially responded to warming and increased precipitation in this semiarid region.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geoderma - Volume 206, September 2013, Pages 24–31
نویسندگان
, , , , , , ,