کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4607639 1337874 2011 39 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Approximation error of the Lagrange reconstructing polynomial
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Approximation error of the Lagrange reconstructing polynomial
چکیده انگلیسی

The reconstruction approach [C.W. Shu, High-order weno schemes for convection-dominated problems, SIAM Rev. 51 (1) (2009) 82–126] for the numerical approximation of f′(x)f′(x) is based on the construction of a dual function h(x)h(x) whose sliding averages over the interval [x−12Δx,x+12Δx] are equal to f(x)f(x) (assuming a homogeneous grid of cell-size ΔxΔx). We study the deconvolution problem [A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy, Uniformly high-order accurate essentially nonoscillatory schemes III, J. Comput. Phys. 71 (1987) 231–303] which relates the Taylor-polynomials of h(x)h(x) and f(x)f(x), and obtain its explicit solution, by introducing rational numbers τnτn defined by a recurrence relation, or determined by their generating function, gτ(x)gτ(x), related with the reconstruction pair of ex. We then apply these results to the specific case of Lagrange-interpolation-based polynomial reconstruction, and determine explicitly the approximation error of the Lagrange reconstructing polynomial (whose sliding averages are equal to the Lagrange interpolating polynomial) on an arbitrary stencil defined on a homogeneous grid.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 163, Issue 2, February 2011, Pages 267–305
نویسندگان
,