کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4637843 1631982 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A neuro-fuzzy classification technique using dynamic clustering and GSS rule generation
ترجمه فارسی عنوان
یک روش طبقه بندی عصبی-فازی با استفاده از خوشه بندی دینامیکی و تولید قوانین GSS
کلمات کلیدی
انتخاب ویژگی؛ عصب فازی؛ خوشه دینامیکی؛ متغیرهای زبانی؛ روش جستجو بخش طلایی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی

An efficient feature subset selection for predictive and accurate classification is highly desirable in many application domains like medical diagnosis, target marketing etc. Many neuro-fuzzy models were proposed for feature selection and efficient classification. One of such existing neuro-fuzzy models is Enhance Neuro-Fuzzy (ENF) system for classification using dynamic clustering. The major problem of ENF is, huge number of linguistic variables generated for each feature, which results in poor interpretation of the rules generated for classification. Therefore, this paper proposes a neuro-fuzzy model which is an extension of ENF. The novelty of the proposed model lies in determining less number of linguistic variables for each feature and also in generating significant linguistic variables in the rules for classification with better interpretation and accuracy. Six datasets are used to test the performance of the proposed model. 10-fold cross validation is used to compare the performance of the proposed model with others. It is observed from the experimental results that the performance of the proposed model is superior to others.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 309, 1 January 2017, Pages 683–694
نویسندگان
, , ,