کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4637941 1631983 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The discretization for bivariate ideal interpolation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
The discretization for bivariate ideal interpolation
چکیده انگلیسی

Carl de Boor conjectured that every ideal interpolant over complex field is the pointwise limit of Lagrange interpolants. Boris Shekhtman proved that the conjecture is true in two variables, and he also provided a counterexample for more than three variables. However, Shekhtman only mentioned the existence of some mathematical objects (without giving a method to compute them) in his proof of the bivariate case. For general interpolation condition functionals on the interpolation sites, we improve Shekhtman’s method to find a sequence of interpolation sites (also called discrete sites), such that the corresponding Lagrange interpolants converge to the given bivariate ideal interpolant. We discuss a special case where the multiplicity space is of breadth one. The results in this paper give a completely algorithmic way to realize Shekhtman’s method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 308, 15 December 2016, Pages 177–186
نویسندگان
, , ,