کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4638220 1631999 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A stabilized finite element method based on two local Gauss integrations for a coupled Stokes–Darcy problem
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
A stabilized finite element method based on two local Gauss integrations for a coupled Stokes–Darcy problem
چکیده انگلیسی

In this paper, a stabilized mixed finite element method for a coupled steady Stokes–Darcy problem is proposed and investigated. This method is based on two local Gauss integrals for the Stokes equations. Its originality is to use a difference between a consistent mass matrix and an under-integrated mass matrix for the pressure variable of the coupled Stokes–Darcy problem by using the lowest equal-order finite element triples. This new method has several attractive computational features: parameter free, flexible, and altering the difficulties inherited in the original equations. Stability and error estimates of optimal order are obtained by using the lowest equal-order finite element triples (P1−P1−P1)(P1−P1−P1) and (Q1−Q1−Q1)(Q1−Q1−Q1) for approximations of the velocity, pressure, and hydraulic head. Finally, a series of numerical experiments are given to show that this method has good stability and accuracy for the coupled problem with the Beavers–Joseph–Saffman–Jones and Beavers–Joseph interface conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 292, 15 January 2016, Pages 92–104
نویسندگان
, , , ,