کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4638456 1632011 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A sample average approximation regularization method for a stochastic mathematical program with general vertical complementarity constraints
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
A sample average approximation regularization method for a stochastic mathematical program with general vertical complementarity constraints
چکیده انگلیسی

Based on the log-exponential function, a sample average approximation (SAA) regularization method is proposed for solving a stochastic mathematical program with general vertical complementarity constraints (SMPVCC) considered by Birbil et al. (2006). Detailed convergence analysis of this method is investigated. It is demonstrated that under some regularity conditions, any accumulation point of the sequence of optimal solutions of SAA regularized problem is almost surely an optimal solution of the SMPVCC as the parameter tends to zero and the sample size tends to infinity. Furthermore, the optimal value sequence of SAA regularized problem converges to the optimal value of SMPVCC with exponential convergence rate with probability one and a sequence of stationary points of regularized SAA problem converges almost surely to a stationary point of SMPVCC. Finally, we show that a stochastic Stackelberg game can be formulated as a SMPVCC problem and an equilibrium solution can be obtained by the method proposed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 280, 15 May 2015, Pages 202–216
نویسندگان
, , ,