کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4638595 1632016 2015 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Matrix decomposition algorithms for arbitrary order C0C0 tensor product finite element systems
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Matrix decomposition algorithms for arbitrary order C0C0 tensor product finite element systems
چکیده انگلیسی

Matrix decomposition algorithms (MDAs) are fast direct methods for the solution of systems of linear algebraic equations which arise in the approximation of Poisson’s equation on the unit square using various techniques such as finite difference, spline collocation and spectral methods. The attraction of MDAs is that they employ fast Fourier transforms and require O(N2logN)O(N2logN) operations on an N×NN×N uniform partition of the unit square. In this paper, MDAs are formulated for the solution of the finite element Galerkin equations arising when spaces of C0C0 piecewise polynomials of degree k≥3k≥3 are employed. Results of numerical experiments exhibit the expected optimal global convergence rates and superconvergence phenomena.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 275, February 2015, Pages 162–182
نویسندگان
, , ,