کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4638674 1632019 2014 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Biorthogonal polynomials and numerical quadrature formulas for some finite-range integrals with symmetric weight functions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Biorthogonal polynomials and numerical quadrature formulas for some finite-range integrals with symmetric weight functions
چکیده انگلیسی

In this work, we derive a family of symmetric numerical quadrature formulas for finite-range integrals I[f]=∫−11w(x)f(x)dx, where w(x)w(x) is a symmetric weight function. In particular, we will treat the commonly occurring case of w(x)=(1−x2)α[log(1−x2)−1]p, pp being a nonnegative integer. These formulas are derived by applying a modification of the Levin LL transformation to some suitable asymptotic expansion of the function H(z)=∫−11w(x)/(z−x)dx as z→∞z→∞, and they turn out to be interpolatory. The abscissas of these formulas have some rather interesting properties: (i) they are the same for all αα, (ii) they are real and in [−1,1][−1,1], and (iii) they are related to the zeros of some known polynomials that are biorthogonal to certain powers of log(1−x2)−1log(1−x2)−1. We provide tables and numerical examples that illustrate the effectiveness of our numerical quadrature formulas.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 272, 15 December 2014, Pages 221–238
نویسندگان
,