کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4638774 | 1632017 | 2015 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An alternative full-pivoting algorithm for the factorization of indefinite symmetric matrices
ترجمه فارسی عنوان
یک الگوریتم کامل چرخش کامل برای تقسیم ماتریس متقارن نامحدود
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
چکیده انگلیسی
This paper presents an algorithm for the factorization of indefinite symmetric matrices that factors any symmetric matrix A into the form LDLT, with D diagonal and L triangular, with its subdiagonal filled with zeros. The algorithm is based on Jacobi rotations, as opposed to the widely used permutation methods (Aasen, Bunch-Parlett, and Bunch-Kaufman). The method introduces little increase in computational cost and provides a bound on the elements of the reduced matrices of order 2nf(n), which is smaller than that of the Bunch-Parlett method (â3nf(n)), and similar to that of Gaussian elimination with full pivoting (nf(n)). Furthermore, the factorization method is not blocked. Although the method presented is formulated in a full-pivoting scheme, it can easily be adapted to a scheme similar to that of the Bunch-Kaufman approach. A backward error analysis is also presented, showing that the elements of the error matrix can be bounded in terms of the elements of the reduced matrices.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 274, 15 January 2015, Pages 44-57
Journal: Journal of Computational and Applied Mathematics - Volume 274, 15 January 2015, Pages 44-57
نویسندگان
I. Fernández de Bustos, J. Agirrebeitia, G. Ajuria, R. Ansola,