کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4638844 1632018 2015 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical approximation of high-dimensional Fokker–Planck equations with polynomial coefficients
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Numerical approximation of high-dimensional Fokker–Planck equations with polynomial coefficients
چکیده انگلیسی

This paper is concerned with the numerical solution of high-dimensional Fokker–Planck equations related to multi-dimensional diffusion with polynomial coefficients or Pearson diffusions. Classification of multi-dimensional Pearson diffusion follows from the classification of one-dimensional Pearson diffusion. There are six important classes of Pearson diffusion—three of them possess an infinite system of moments (Gaussian, Gamma, Beta) while the other three possess a finite number of moments (inverted Gamma, Student and Fisher–Snedecor). Numerical approximations to the solution of the Fokker–Planck equation are generated using the spectral method. The use of an adaptive reduced basis technique facilitates a significant reduction in the number of degrees of freedom required in the approximation through the determination of an optimal basis using the singular value decomposition (SVD). The basis functions are constructed dynamically so that the numerical approximation is optimal in the current finite-dimensional subspace of the solution space. This is achieved through basis enrichment and projection stages. Numerical results with different boundary conditions are presented to demonstrate the accuracy and efficiency of the numerical scheme.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 273, 1 January 2015, Pages 296–312
نویسندگان
, ,