کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4638898 1632023 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An augmented Lagrangian dual optimization approach to the HH-weighted model updating problem
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
An augmented Lagrangian dual optimization approach to the HH-weighted model updating problem
چکیده انگلیسی

Model updating for the quadratic eigenvalue problem aims to update the model Q(λ):=λ2M+λC+KQ(λ):=λ2M+λC+K by given eigendata. In this paper, we consider the HH-weighted model updating problem which can not only preserve the symmetry and definiteness of the original model but also express our confidence in the original model through assigning different confidence weights. We propose an augmented Lagrangian dual method for the HH-weighted model updating problem. Under some mild assumptions, our method is shown to converge at least linearly. Numerical results illustrate the effectiveness of our method. In addition, we compare our method with the semi-definite programming (SDP) method. Numerical results illustrate that when the scale of the model becomes large our method still works but the SDP method failed to converge.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 268, 1 October 2014, Pages 111–120
نویسندگان
,