کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4638942 1632026 2014 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic expansion of the Tricomi–Carlitz polynomials and their zeros
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Asymptotic expansion of the Tricomi–Carlitz polynomials and their zeros
چکیده انگلیسی

The Tricomi–Carlitz polynomials fn(α)(x) are non-classical discrete orthogonal polynomials on the real line with respect to the step function whose jumps are dψ(α)(x)=(k+α)k−1e−kk!atx=xk=±(k+α)−1/2,k=0,1,2,…. In this paper, we derive an asymptotic expansion for fn(α)(t/ν) as n→∞n→∞, valid uniformly for bounded real tt, where ν=n+2α−1/2ν=n+2α−1/2 and αα is a positive parameter. The validity for bounded tt can be extended to unbounded tt by using a sequence of rational functions introduced by Olde Daalhuis and Temme. The expansion involves the Airy functions and their derivatives. Error bounds are given for one-term and two-term approximations. Asymptotic formulas are also presented for the zeros of fn(α)(t/ν).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 265, 1 August 2014, Pages 220–242
نویسندگان
, ,