کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4638963 1632029 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On finite element method-flux corrected transport stabilization for advection-diffusion problems in a partial differential-algebraic framework
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
On finite element method-flux corrected transport stabilization for advection-diffusion problems in a partial differential-algebraic framework
چکیده انگلیسی
An extension of the finite element method-flux corrected transport stabilization for hyperbolic problems in the context of partial differential-algebraic equations is proposed. Given a local extremum diminishing property of the spatial discretization, the positivity preservation of the one-step θ-scheme when applied to the time integration of the resulting differential-algebraic equation is shown, under a mild restriction on the time step size. As a crucial tool in the analysis, the Drazin inverse and the corresponding Drazin ordinary differential equation are explicitly derived. Numerical results are presented for non-constant and time-dependent boundary conditions in one space dimension and for a two-dimensional advection problem with a sinusoidal inflow boundary condition and the advection proceeding skew to the mesh.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 262, 15 May 2014, Pages 115-126
نویسندگان
, ,