کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4639102 1341216 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Error bounds of the Micchelli–Sharma quadrature formula for analytic functions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Error bounds of the Micchelli–Sharma quadrature formula for analytic functions
چکیده انگلیسی

Micchelli and Sharma constructed in their paper [On a problem of Turán: multiple node Gaussian quadrature, Rend. Mat. 3 (1983) 529–552] a quadrature formula for the Fourier–Chebyshev coefficients, which has the highest possible precision. For analytic functions the remainder term of this quadrature formula can be represented as a contour integral with a complex kernel. We study the kernel, on elliptic contours with foci at the points ∓1∓1 and a sum of semi-axes ρ>1ρ>1, for the quoted quadrature formula. Starting from the explicit expression of the kernel, we determine the location on the ellipses where the maximum modulus of the kernel is attained, and derive effective error bounds for this quadrature formula. Numerical examples are included.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 259, Part A, 15 March 2014, Pages 48–56
نویسندگان
, ,