کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4639164 | 1632033 | 2014 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Product integration rules for Chebyshev weight functions with Chebyshev abscissae
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We study two product integration rules, one for the Chebyshev weight of the first-kind based on the Chebyshev abscissae of the second-kind, and another one constructed the other way around, i.e., relative to the Chebyshev weight of the second-kind and based on the Chebyshev abscissae of the first-kind. The new rules are shown to have positive weights given by explicit formulae. Furthermore, we determine the precise degree of exactness and we compute the variance of the quadrature formulae, we examine their definiteness or nondefiniteness, and we obtain error bounds for these formulae either asymptotically optimal by Peano kernel methods or for analytic functions by Hilbert space techniques. In addition, the convergence of the quadrature formulae is shown not only for Riemann integrable functions on [â1,1], but also, by generalizing a result of Rabinowitz, for functions having a monotonic singularity at one or both endpoints of [â1,1].
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 257, February 2014, Pages 180-194
Journal: Journal of Computational and Applied Mathematics - Volume 257, February 2014, Pages 180-194
نویسندگان
Sotirios E. Notaris,