کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4639273 1632043 2013 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient simulation of tail probabilities for sums of log-elliptical risks
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Efficient simulation of tail probabilities for sums of log-elliptical risks
چکیده انگلیسی

In the framework of dependent risks it is a crucial task for risk management purposes to quantify the probability that the aggregated risk exceeds some large value uu. Motivated by Asmussen et al. (2011) [1] in this paper we introduce a modified Asmussen–Kroese estimator for simulation of the rare event that the aggregated risk exceeds uu. We show that in the framework of log-Gaussian risks our novel estimator has the best possible performance i.e., it has asymptotically vanishing relative error. For the more general class of log-elliptical risks with marginal distributions in the Gumbel max-domain of attraction we propose a modified Rojas-Nandayapa estimator of the rare events of interest, which for specific importance sampling densities has a good logarithmic performance. Our numerical results presented in this paper demonstrate the excellent performance of our novel Asmussen–Kroese algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 247, 1 August 2013, Pages 53–67
نویسندگان
, ,