کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4639531 1341238 2013 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gradient-enhanced surrogate modeling based on proper orthogonal decomposition
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Gradient-enhanced surrogate modeling based on proper orthogonal decomposition
چکیده انگلیسی

A new method for enhanced surrogate modeling of complex systems by exploiting gradient information is presented. The technique combines the proper orthogonal decomposition (POD) and interpolation methods capable of fitting both sampled input values and sampled derivative information like Kriging (aka spatial Gaussian processes). In contrast to existing POD-based interpolation approaches, the gradient-enhanced method takes both snapshots and partial derivatives of snapshots of the associated full-order model (FOM) as an input. It is proved that the resulting predictor reproduces these inputs exactly up to the standard POD truncation error. Hence, the enhanced predictor can be considered as (approximately) first-order accurate at the snapshot locations. The technique applies to all fields of application, where derivative information can be obtained efficiently, for example via solving associated primal or adjoint equations. This includes, but is not limited to Computational Fluid Dynamics (CFD). The method is demonstrated for an academic test case exhibiting the main features of reduced-order modeling of partial differential equations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 237, Issue 1, 1 January 2013, Pages 403–418
نویسندگان
,