کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4639544 1341238 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hopf bifurcation analysis of a general non-linear differential equation with delay
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Hopf bifurcation analysis of a general non-linear differential equation with delay
چکیده انگلیسی

This work represents Hopf bifurcation analysis of a general non-linear differential equation involving time delay. A special form of this equation is the Hutchinson–Wright equation which is a mile stone in the mathematical modeling of population dynamics and mathematical biology. Taking the delay parameter as a bifurcation parameter, Hopf bifurcation analysis is studied by following the theory in the book by Hazzard et al. By analyzing the associated characteristic polynomial, we determine necessary conditions for the linear stability and Hopf bifurcation. In addition to this analysis, the direction of bifurcation, the stability and the period of a periodic solution to this equation are evaluated at a bifurcation value by using the Poincaré normal form and the center manifold theorem. Finally, the theoretical results are supported by numerical simulations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 237, Issue 1, 1 January 2013, Pages 565–575
نویسندگان
, , ,