کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4639546 1341238 2013 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quadratures associated with pseudo-orthogonal rational functions on the real half line with poles in [−∞,0][−∞,0]
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Quadratures associated with pseudo-orthogonal rational functions on the real half line with poles in [−∞,0][−∞,0]
چکیده انگلیسی

We consider a positive measure on [0,∞)[0,∞) and a sequence of nested spaces ℒ0⊂ℒ1⊂ℒ2⋯ℒ0⊂ℒ1⊂ℒ2⋯ of rational functions with prescribed poles in [−∞,0][−∞,0]. Let {φk}k=0∞, with φ0∈ℒ0φ0∈ℒ0 and φk∈ℒk∖ℒk−1φk∈ℒk∖ℒk−1, k=1,2,…k=1,2,… be the associated sequence of orthogonal rational functions. The zeros of φnφn can be used as the nodes of a rational Gauss quadrature formula that is exact for all functions in ℒn⋅ℒn−1ℒn⋅ℒn−1, a space of dimension 2n2n. Quasi- and pseudo-orthogonal functions are functions in ℒnℒn that are orthogonal to some subspace of ℒn−1ℒn−1. Both of them are generated from φnφn and φn−1φn−1 and depend on a real parameter ττ. Their zeros can be used as the nodes of a rational Gauss–Radau quadrature formula where one node is fixed in advance and the others are chosen to maximize the subspace of ℒn⋅ℒn−1ℒn⋅ℒn−1 where the quadrature is exact. The parameter ττ is used to fix a node at a preassigned point. The space where the quadratures are exact has dimension 2n−12n−1 in both cases but it is in ℒn−1⋅ℒn−1ℒn−1⋅ℒn−1 in the quasi-orthogonal case and it is in ℒn⋅ℒn−2ℒn⋅ℒn−2 in the pseudo-orthogonal case.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 237, Issue 1, 1 January 2013, Pages 589–602
نویسندگان
, , , ,