کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4639562 1341239 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Iterative solutions of mildly nonlinear systems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Iterative solutions of mildly nonlinear systems
چکیده انگلیسی

The correct numerical modelling of free-surface hydrodynamics often requires the solution of diagonally nonlinear systems. In doing this, one may substantially enhance the model accuracy while fulfilling relevant physical constraints. This is the case when a suitable semi-implicit discretization is used, e.g., to solve the one-dimensional or the multi-dimensional shallow water equations; to model axially symmetric flows in compliant arterial systems; to solve the Boussinesq equation in confined–unconfined aquifers; or to solve the mixed form of the Richards equation. In this paper two nested iterative methods for solving a mildly nonlinear system   of the form V(η)+Tη=b are proposed and analysed. It is shown that the inner and the outer iterates are monotone, and converge to the exact solution for a wide class of mildly nonlinear systems of applied interest. A simple, and yet non-trivial test problem derived from the mathematical modelling of flows in porous media is formulated and solved with the proposed methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 236, Issue 16, October 2012, Pages 3937–3947
نویسندگان
, ,