کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4639617 1341242 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical solution of nonlinear matrix equations arising from Green’s function calculations in nano research
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Numerical solution of nonlinear matrix equations arising from Green’s function calculations in nano research
چکیده انگلیسی

The Green’s function approach for treating quantum transport in nano devices requires the solution of nonlinear matrix equations of the form X+(C∗+iηD∗)X−1(C+iηD)=R+iηP, where RR and PP are Hermitian, P+λD∗+λ−1DP+λD∗+λ−1D is positive definite for all λλ on the unit circle, and η→0+η→0+. For each fixed η>0η>0, we show that the required solution is the unique stabilizing solution XηXη. Then X∗=limη→0+XηX∗=limη→0+Xη is a particular weakly stabilizing solution of the matrix equation X+C∗X−1C=RX+C∗X−1C=R. In nano applications, the matrices RR and CC are dependent on a parameter, which is the system energy EE. In practice one is mainly interested in those values of EE for which the equation X+C∗X−1C=RX+C∗X−1C=R has no stabilizing solutions or, equivalently, the quadratic matrix polynomial P(λ)=λ2C∗−λR+CP(λ)=λ2C∗−λR+C has eigenvalues on the unit circle. We point out that a doubling algorithm can be used to compute XηXη efficiently even for very small values of ηη, thus providing good approximations to X∗X∗. We also explain how the solution X∗X∗ can be computed directly using subspace methods such as the QZ algorithm by determining which unimodular eigenvalues of P(λ)P(λ) should be included in the computation. In some applications the matrices C,D,R,PC,D,R,P have very special sparsity structures. We show how these special structures can be exploited to drastically reduce the complexity of the doubling algorithm for computing XηXη.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 236, Issue 17, November 2012, Pages 4166–4180
نویسندگان
, , ,