کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4639919 1341253 2011 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Rayleigh–Ritz method, refinement and Arnoldi process for periodic matrix pairs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
The Rayleigh–Ritz method, refinement and Arnoldi process for periodic matrix pairs
چکیده انگلیسی

We extend the Rayleigh–Ritz method to the eigen-problem of periodic matrix pairs. Assuming that the deviations of the desired periodic eigenvectors from the corresponding periodic subspaces tend to zero, we show that there exist periodic Ritz values that converge to the desired periodic eigenvalues unconditionally, yet the periodic Ritz vectors may fail to converge. To overcome this potential problem, we minimize residuals formed with periodic Ritz values to produce the refined periodic Ritz vectors, which converge under the same assumption. These results generalize the corresponding well-known ones for Rayleigh–Ritz approximations and their refinement for non-periodic eigen-problems. In addition, we consider a periodic Arnoldi process which is particularly efficient when coupled with the Rayleigh–Ritz method with refinement. The numerical results illustrate that the refinement procedure produces excellent approximations to the original periodic eigenvectors.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 235, Issue 8, 15 February 2011, Pages 2626–2639
نویسندگان
, , , , ,