کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4640007 | 1341257 | 2011 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A block IDR(s) method for nonsymmetric linear systems with multiple right-hand sides
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The IDR(s) based on the induced dimension reduction (IDR) theorem, is a new class of efficient algorithms for large nonsymmetric linear systems. IDR(1) is mathematically equivalent to BiCGStab at the even IDR(1) residuals, and IDR(s) with s>1 is competitive with most Bi-CG based methods. For these reasons, we extend the IDR(s) to solve large nonsymmetric linear systems with multiple right-hand sides. In this paper, a variant of the IDR theorem is given at first, then the block IDR(s), an extension of IDR(s) based on the variant IDR(s) theorem, is proposed. By analysis, the upper bound on the number of matrix-vector products of block IDR(s) is the same as that of the IDR(s) for a single right-hand side in generic case, i.e., the total number of matrix-vector products of IDR(s) may be m times that of of block IDR(s), where m is the number of right-hand sides. Numerical experiments are presented to show the effectiveness of our proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 235, Issue 14, 15 May 2011, Pages 4095-4106
Journal: Journal of Computational and Applied Mathematics - Volume 235, Issue 14, 15 May 2011, Pages 4095-4106
نویسندگان
L. Du, T. Sogabe, B. Yu, Y. Yamamoto, S.-L. Zhang,