کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4640068 1341259 2012 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-parameter Tikhonov regularization and model function approach to the damped Morozov principle for choosing regularization parameters
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Multi-parameter Tikhonov regularization and model function approach to the damped Morozov principle for choosing regularization parameters
چکیده انگلیسی

In this paper, we study the multi-parameter Tikhonov regularization method which adds multiple different penalties to exhibit multi-scale features of the solution. An optimal error bound of the regularization solution is obtained by a priori choice of multiple regularization parameters. Some theoretical results of the regularization solution about the dependence on regularization parameters are presented. Then, an a posteriori parameter choice, i.e., the damped Morozov discrepancy principle, is introduced to determine multiple regularization parameters. Five model functions, i.e., two hyperbolic model functions, a linear model function, an exponential model function and a logarithmic model function, are proposed to solve the damped Morozov discrepancy principle. Furthermore, four efficient model function algorithms are developed for finding reasonable multiple regularization parameters, and their convergence properties are also studied. Numerical results of several examples show that the damped discrepancy principle is competitive with the standard one, and the model function algorithms are efficient for choosing regularization parameters.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 236, Issue 7, January 2012, Pages 1815–1832
نویسندگان
,